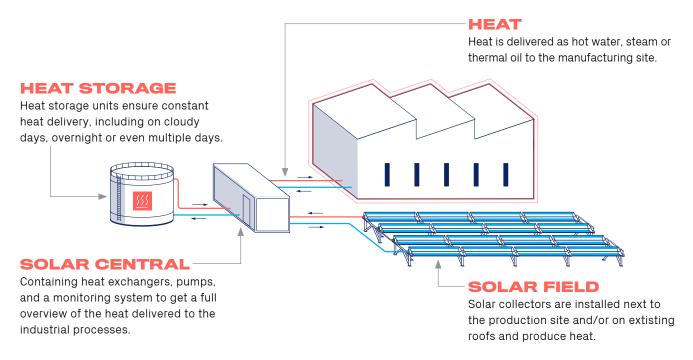
🗭 ABSOLICON

SOLAR HEAT INTEGRATIC DECARBONIZE YOUR INDUSTRY

Click or scan the QR code to learn more about decarbonizing industries with solar thermal https://www.dbsolicon.com/how-to-decarbonize/ decarbonize-industrial-production/



In the face of energy market uncertainty and increasingly stringent sustainability regulations, the industrial production landscape is undergoing transformative changes globally.

A transition to renewable energy sources has emerged as a key aspect of our quest for a sustainable future, and to thrive in this evolving environment, companies must shift towards renewable heat, embracing decarbonization to ensure their competitiveness. The heavy reliance on heat for energyintensive industrial processes presents challenges but also opportunities to decarbonize and dramatically reduce CO_2 emissions, optimize energy use and minimize costs.

Solar Heat for Industrial Processes - SHIP

Industries often rely on substantial amounts of thermal energy, which is typically produced using fossil fuels. SHIP aims to replace or supplement this conventional energy with renewable solar energy, reducing carbon emissions and enhancing sustainability.

THE AVARAGE PLANT CASE

In this virtual case scenario, we have a plant requiring 20 tonnes of steam per hour at 5 bar and 152 °C, a yearly demand of 95,000 MWh steam.

Solar Heat Europe* has, by consultation with its members, provided the data in the chart below based on typical prices in 2024. Another contributing factor is of course that Solar thermal technology receives substantial subsidies in many

European countries. The numbers are indicative and may vary depending on many factors, but it gives you a good overview.

Case description

SOLAR IRRADIATION

The solar irradiation is based on a typical meteorological year, ranging between 1800 kWh/m² in Spain to 1100 kWh/m² in Sweden.

EFFICIENCY

The efficiency of the system is influenced by various factors, in this virtual case it ranges from 60 % in Spain (Option A) to 30 % in the Swedish scenario (Option B).

RENEWABLE FRACTION

The renewable fraction is the amount of process heat covered by solar thermal. This is influenced by location and storage capacity. For this purpose, an average daily storage has been assumed.

CAPITAL EXPENCES

The range of capital expenses (CAPEX) for **Option A** are 500 - 643 €/kW, and **Option B** 643 - 857 €/kW.

LEVELIZED COST OF HEAT

The levelized cost of heat (LCOH) is based on 25 years lifetime, 5% discount, and yearly operational costs (OPEX) of 1% of the initial CAPEX.

INTEGRATION OPTIONS

This case has two integration options:

	REGIONS	OPTION A Hot water at 95°C	OPTION B Steam at 152°C
Requred land area [ha]	Southern Europe (Madrid, Spain)	0.8	6.7
	Central Europe (Graz, Austria)	1.4	11.9
	Northern Europe (Stockholm, Sweden)	2.0	14.5
LCOH €/MWh incl. 0% subsidy	Southern Europe (Madrid, Spain)	25 - 32	52 - 69
	Central Europe (Graz, Austria)	39 - 51	87 - 116
	Northern Europe (Stockholm, Sweden)	56 - 73	104 - 139
LCOH €/MWh incl. 30% subsidy	Southern Europe (Madrid, Spain)	19 - 24	38 - 51
	Central Europe (Graz, Austria)	28 - 37	63 - 84
	Northern Europe (Stockholm, Sweden)	40 - 52	75 - 100

* Source: Solar Heat Integration – Solutions for the decarbonisation of the pulp and paper industry, page 4 http://solarheateurope.eu/wp-content/uploads/2024/04/EESF-Solar-heat-factsheet-f.pdf

KEY PARAMETERS TO CONSIDER¹

KEY PROCESS	VALUE		
	NON-CONCENTRATED SOLAR THERMAL	CONCENTRATED SOLAR THERMAL	
Supported temperature	Up to 180 °C with ideal applications under 120 °C	Up to 310 °C	
Heat demand profile	 Year-round heat demand Heat demand during the daytime is ideal but thermal storage is commonly used to cover demand during other times of the day 		
Energy storage integration	• Primarily hot water storage tanks but other types of thermal storage are possible as well.		
Process integration	 Optimal: Integration of heat supply directly at the industrial process Alternative: Integration of heat supply into existing steam or hot water network 		
Waste heat utilization & hybridization	• Solar thermal can upgrade the available waste heat and be used to preheat water for a heat pump or boiler.		

KEY LOCATION	VALUE		
PARAMETERS	NON-CONCENTRATED SOLAR THERMAL	CONCENTRATED SOLAR THERMAL	
Required space	1.6-1.9 m²/kW	2.1-4.2 m²/kW	
Minimum plant size	In principle, there is no minimum plant size.		
Distance between solar thermal plant and heat sink	 Up to 300 m - preferred Up to 500 m - feasible 500 m to 1 km - needs further assessment 		
Geographical location:	All around the world, with added advantage for locations with high solar irradiance level		
• Locations with high irradiance	1700 – 2200 Global Horizontal Irradiance (GHI)	2000 – 2500 (Direct Normal Irradiance) DNI	
• Other viable locations	700 – 1700 GHI	1000 – 2000 DNI	
Local infrastructure	No specific requirements		

	VALUE		
PARAMETERS	NON-CONCENTRATED SOLAR THERMAL	CONCENTRATED SOLAR THERMAL	
Capital expenditure	400-1000 €/kW	600-1200 €/kW	
Operational cost ²	0.5-1% of CAPEX annually	0.5-3% of CAPEX annually	
Levelized Cost of Heat	20-50 €/MWh	30-70 €/MWh²	
Carbon savings when replacing: ³			
Natural gas boilers	205-250 kg CO ₂ -eq per MWh		
Coal fired boilers	319-450 kg $\rm CO_2$ -eq per MWh		

1 Main source: WBCSD, Renewable industrial heat navigator brief - Solar thermal solutions https://www.wbcsd.org/resources/solar-thermal-solutions/

2 IEA SHC (2024), Update on SHIP Technology Costs & SHIP Business and Financing Models https://doi.org/10.18777/ieashc-task64-2024-0005

3 Values based on 'WBCSD, Concentrated solar heat https://wbcsdpublications.org/wp-content/uploads/2020/07/WBCSD_Business_Case_Concentrated_solar_heat.pdf

🗭 ABSOLICON

Absolicon Solar Collector AB, Fiskaregatan 11, SE-871 33 Härnösand - Sweden

www.absolicon.com/